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We establish exact inequalities for the structure-function scaling exponents of a passively advected scalar in
both the inertial-convective and viscous-convective ranges. These inequalities involve the scaling exponents of
the velocity structure functions and, in a refined form, an intermittency exponent of the convective-range scalar
flux. They are valid for three-dimensional Navier-Stokes turbulence and satisfied within errors by present
experimental data. The inequalities also hold for any “synthetic” turbulent velocity statistics with a finite
correlation in time. We show that for time-correlation exponents of the velocity smaller than the “local
turnover” exponent, the scalar spectral exponent is strictly less than that in KraichRéays. Rev. Lett72,

1016 (1994); Phys. Fluidsl1, 945 (1968; J. Fluid Mech.64, 737 (1974; 62, 305 (1974] soluble “rapid-
change” model with velocitys correlated in time. Our results include as a special case an exponent inequality
derived previously by Constantin and Procaddimnlinearity 7, 1045(1994], but with a more direct proof.

The inequalities in their simplest form follow from a Kolmogorov-type relation for the turbulent passive scalar
valid in each space dimensi@ah Our improved inequalities are based upon a rigorous version of the refined
similarity hypothesis for passive scalars. These are compared with the relations implied by “fusion rules”
hypothesized for scalar gradienf§1063-651X96)04308-5

PACS numbds): 47.27—i

[. INTRODUCTION with o a mean shear strength. Helig ) = 0 formally for all
p. Whereag11,12 predicted{,( #) to be a linear function of
Much progress has been made recently in the understandidex p, it is now generally expected that these exponents
ing of anomalous scaling for the problem of randomly ad-are some nontrivial concave functionsmfi.e., that there is
vected scalargl-10. The dynamical equation of the model anomalous scalinfl4].

is The recent work on this problem cited above mostly deals
with a special model in which the Eulerian velocity field is
[9;+V(r,t)-V,]0(r,t) =k, 0(r,t)+f(r,t), (1)  zero-mean Gaussia®, correlated in time
with 6(r,t) the scalar fieldf(r,t) a (stochastic or determin- (i(r,o;(r',t"))=V;(r—r")s(t—t"). 5

istic) source, andv(r,t) a random incompressible velocity

field. The issue of interest is the presumed scaling law This so-called “rapid-change model” was investigated by

Kraichnan[15], who observed that for this case the infamous
Sp(l)ngp(a) ?) closure problem is absent: théth-order correlator ofé

obeys equations depending only upon itself &nder-order
correlators. The recent analytical investigations explore par-
ticular limiting regimes: the case with space dimension
d>1 in [6,7] and the case with eddy-diffusivity exponent
0<(¢<1 in [4,5]. The latter exponent is defined by the as-
sumed scaling relation for th@ichardsom eddy-diffusivity
tensor

as |—0 for the scalar structure functionsSy(l;6)
=(|A,6|P). For a high Reynolds number turbulence and for
molecular diffusivity of the order of magnitude of the mo-
lecular viscosity, or greatek= v, the dimensional theory of
Obukhov[11] and Corrsin12] implies that,

Sp(l ) N (X/8 1/3) p/2| p/3, (3)

1 [t
Ki,-<r)zij ds{[vi(r,0) = vi( O,V [vj(r,5) ~v;(0,9)])

in which y=«([V#]?) is the (mean scalar dissipation and -

¢ is the dissipation of kinetic energy. The scaling law B]. =V, (0)— V(1) (6)

is supposed to hold fot.>1>(«%/&)¥* wherelL is the . e

length scale of the scalar source, assumed less than the intgat

gral scale of velocity. This specifies thertial-convective

range Thus{,(6) = p/3 in the classical theory of this range.

On the other hand, fork<<v there is another range,

L>1> (% &)Y, in which it is now assumed thét is at, or

smaller than, the Kolmogorov dissipation scale®/g)Y%.  for smallr. Note that Eq(6) is an analog for this model of

Over this range, the so-calledscous-convective rangéhe  Taylor's 1921 exact formula for the eddy-diffusivifyl6]

Kij(r)~D(d—l)5ijr5+ Dgl’g

5 rirj) 0
ij TZ_

theory of Batchelof13] proposes that (which involves instead Lagrangian velocities
It is our purpose here to consider the problem with a finite
Sp(|)~()(/0')plzlogXP(I/L), (4)  time correlation of the convecting velocity field. This in-

1063-651X/96/5¢2)/14977)/$10.00 54 1497 © 1996 The American Physical Society



1498 GREGORY L. EYINK 54

cludes the realistic case where the velocities are turbulent II. YAGLOM RELATION INEQUALITIES
solutions of Navier-Stokes dynamics. In addition, our results
apply to a model recently considerg8] with the Eulerian
velocity field taken as a Gaussian with covariance obeyin
dynamical scaling

We shall sketch here very concisely the proof of the Ya-
lom relation for any space dimensidn See alsd19] and,
or more detail§20], and Appendix Il off21]. The first step
is to define amean “physical space scalar flux” via

Dr¢

Ty

t

_ , (8  The subscript “conv” indicates that only the convective
Ty

1
. ={lp. -0 . —0. 1d
Vij(r,H)= o ([vi(r,) —vi(0,0)][v(r,00—v;(0,0)]) X(h== 5 g 00000 +1LD)] convio- (12)
rif; t
Sij— =2 |9.| — . X ; .
r Ty terms in Eg.(1) are used. A simple calculation using
, , o o incompressibility and spatial homogeneity gives
with 7,= 7 (r/L)% Our results in the finite correlation-time X(1)=— 1/4V,-(A\M[A,6]%). Assuming also spatial isot-
models shall be; applicable to both the limiting regimes stud-ropy, the vectoA(l) = (AV[ A,6]2) is (for d>2) of the form
ied for the rapid-change modett>1 and 0<{<1. How- A(l)=A()I, wherel is the unit vector in the direction of

ever, rather than a;ymptotic_formulgg for the _scaling €XPOr "I the convective range of length scalesvith constant
nents, we shall derive exact inequalities. One interest of OUl ean scalar flux Eq12) becomes—4y="Y,-A(l) or

results is that they point up some significant differences be-

59| —|+

tween the zero and finite correlation-time problems. d—1 dA
Our simplest set of inequalities are based upon the rela- —4x= I_A”(I)+ W(l)' 13
tion
4 The only solution of this equation regular fbr-0 is
(Alvu[AHﬂZ):—aX'- ) 4y

This equation is valid foL.>1> 5y, whereL is the length
scale of the scalar source ang, is a dissipation length, This completes the derivation of E¢P). It is useful to re-
given by the Obukhov-Corrsin lengthc?/e)Y* [11,17 for ~ mark here that the Yaglom relation doaest hold in the
high Reynolds number Navier-Stokes turbulence and byKraichnan rapid-change model. In fact, the left-hand side of
(/D) for the model of[8] [Eq. (8)]. Equation(9) is a  EQ. (9) is not even well defined in Kraichnan’s model, since
relation analogous to that of Kolmogorov for the third-orderit is expressed by a product dfiy; and[A,6]? at a single
velocity structure functiorf17] and it was proved fod=3 instant However, with thed correlation in time, the velocity
by Yaglom in 1949[18]. It simply expresses the constancy is a distribution-valuedgeneralizeglprocess and the single-
of scalar flux over the convective range of scales. By directime values are not defined. The analogous result for Kraich-
application of the Higler inequality, we will derive from this nan’s model i§15]
relation a basic set of inequalities relating the scaling expo-
nents of pth structure functions of the scaldt(6) with X ¢
. > P Sy(1) 21775 (15

those of the velocity,(v). The implications of these results Dd
will be discussed in Sec. II.

Furthermore, we shall derive an improved set of inequali
ties by means of aefined similarity relation(RSR for the

passive scalar. In a precise version stated below, the RSR WBodel- . g
prove is A simple set of exponent inequalities follows from the

Yaglom relation as a straightforward application of the
Aw(P)[A6(r)]? Holder inequality. The inequalities faf,(6) involve as well
— 7 (100 the exponentg,(v) of the (absoluté structure functions of
velocity Sy(1;0)=(|A|P)~1%0). They are simplest to
state in terms of the exponents(6)={,(6)/p and
op(v)={p(v)/p. By the Yaglom relation and the Htier
inequality,

‘which, like the Yaglom relation for the finite correlation-time
velocity statistics, is an exact result in th# correlated

X(r)~

in which X,(r) is a local scalar flux to scales less thaat
space point. (cf [14].) The corresponding inequalities will
involve theintermittency exponent,(X) of the scalar flux

— 2
{IX|Py~ 170, (12) 4x1=[(Aw[A6]%)]
. ) ) ) ) $<|A|V|q>l/q<|A| 0|p>2/p~|2rrp(0)+(rq(v) (16)
which measures the increasing spatial spottiness of the flux
as|—0. These inequalities rigorously establish an intuitivefor
fact: that convective-range intermittency of the scalar flux
implies anomalous scaling of the scalar structure functions. — ) g+}—1 1
These results are given in Sec. Ill, along with some general P=2, p q (17)
discussion of refined similiarity hypotheses for passive sca-
lars, including the relation to “fusion rules” proposed for As this relation must hold in the infinitely long convective

scalar gradients. range ad —0, it follows that
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20,(0) +oq(v)<1. (18 This assumption on the velocity scaling exponents corre-
sponds to a “monofractal” field and would be true for con-

We have used the isotropic form of the Yaglom relation, butvection by a Gaussian random velocity field.
this is inessentialsee[21]). The special case of E(L8) for The last inequality has some interesting consequences for
p=%,q=1 was previously derived by Constantin and Pro-the model studied ifi8]. In that model the velocity field is
caccia[22] on the basis of estimates for Hausdorff dimen-space-time Gaussian with covariance satisfying dynamical
sions of scalar level sets; see K4.2) there. The authors of scaling Eq(8). Settingt=0 in that equation, it is easy to see
[22] were not specific about which orderq of exponents that 2h=¢—2z or
were involved, but inspection of the proof shows that
andqg=1, in our notation, was used. Actually, most of their {=2h+2z. (23
proof generalizes to generplq satisfying Eq.(17), except
for the result on dimensions of level set&,, As pointed out above, has roughly the interpretation of an
Du(Eg)<d—o0.(6), their Eq.(1.8), which usedp=c. In-  eddy-diffusivity exponent analogous to the Richardson expo-
cidentally, we disagree with the conclusion[@P] that the  nent /r=4/3 [25]. This is not entirely accurate since the
estimate is Sharp, i.e., an equality. This claim in Sec. IV iSexponen[ appears in the Sca“ng law m hypothesized for
based on an opposite inequalityr2(6) +o1(v)=1, sup-  Eulerian velocitiesin the model of(8]. For z<1 Eq.(8) is
posed to be derived if23], which we dispute. In fact, €x- not an accurate representation of Eulerian time correlations,
amination of the argument d23] shows that an implicit which will then be dominated by convective sweeping. Nev-
assumption was made thaspatially uniformdiffusive cut-  ertheless, keeping to this terminology, there is also for fixed
off exists, below which length scale the scalar graph is‘eddy diffusivity exponent” { a complementarity between
smooth. This assumption was used in the SE|ECti0rbdh the magnitudes of \/e|ocity regu|arity expondmtand dy_
their inequality Eq(4.23. To bound val(G(B)) frombelow  namical scaling exponet if one is big, the other is small.
requires thatG(B) is smooth on scales less than or equal toOf course, this is just due to the simple heuristic that eddy-
ro SO that a uniform choice af, may be made. It is possible, giffusivity K,~uv?7 . A similar relation should also hold for
however, that there is a “local fluctuating cutoff,” as postu- Navier-Stokes turbulence, i.6= 7,(v) + z, except that there
lated in some multifractal pictures; sg&4]. In that case, the  the scaling exponent will correspond tolagrangian time
uniform choice ofr , would fail and the result, as well as its correlations. It is only for Lagrangian time functions that the
proof, might break down. Our very simple derivation hereqgynamical scaling can hold and, furthermore, the exact Tay-
shows that Eq(18) belongs to a family of inequalities that |or formula Eq.(7) involves such correlations. By means of

are a consequence just of the constancy of scalar flux. Theggy (23), the main inequality Eq19) may be reexpressed as
inequalities express a complementarity between the regular-

ity of the velocity and scalar fields: if th@esoy regularity P
exponent of velocityr,(v) is “big” then the corresponding INCIES Z(Z+ v), (29
scalar exponendr,(#) must be “small.”

The basic inequality Eq.18) may also be written as
wherey=2—{. In fact, Eq.(23) states that

p
{p(0)=5[1-0q(v)] 19

for p=2, 2/p+ 1/q=1. This relation may be considered under

var_ious special assumptions. !f the scaling exponents of vesg that it is a direct consequence. Equatia® holds for all
locity v are taken to be K41, i.arq(v)=1/3 forallq=1;, =2 in the model of(8]; furthermore, it will hold also for
then it follows that p=2 in Navier-Stokes turbulence, if=¢,(v)+z as ex-
pected.
Zpl g)sg (20) In [S] an expan;ion of the rapid-change model was devel-
oped in the magnitude of the correlation time. They em-
ployed a particular choice of dynamical exponenrt y.
Their plausible physical argument for this choice ran as fol-
ows: the “local turnover time” of scalar eddies at schlis
t,~I/v,~11"" and this defines a “local turnover value” of
the dynamical exponert=1—h. Note that by using Eqg.
op(0)<0. (21) (23 this value is achieved precisely whefi=1+h or
vy=1-nh. In other words, the local turnover exponent is ob-
The smoothness assumption would hold, for example, for theained whenz=1+y. For z>v the velocity at vanishingly
velocity field in the viscous dissipation range and then thesmall scales changes randomly at a faster and faster rate
Batchelor exponents for the viscous-convection range appeaglative to the evolution time of the scalar eddies. Hence it is
as upper bounds. More generally, if it is assumed thaplausible that the predictions of the rapid-change model will

for p=2. Thus the Obukhov-Corrsin predictions for the
inertial-convective range appear as upper bounds. Likewis
if the velocity field is assumed smooth, af(v)=1 for all
g=1, then

oq(v)=h for all =2, then hold in that case. On the other hand, for y, the realiza-
tions of the velocity field are selected randomly at a rate that
¢ (e)gg(l_h) (220 908s to zero compared to the scalar cascade rate, i.e., the
P 2 ' velocity field randomness is “frozen in.” We shall now ob-
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serve that in the latter case of quenched randomness, @rell defined and the left-hand side of the Yaglom relation,

z<v, the scalar spectral exponent for the idealized white-noise limit, is a meaningless expres-
sion)
£2(0)<, (26)
with strict inequality. This is direct from Eq(24). More IIl. REFINED SIMILARITY INEQUALITIES
generally, forp=2 We shall now derive inequalities that improve those from
o the Yaglom relation. The basic idea of the proof is a scaling
Zo( 0)<§y. 27 relation between thécal scalar fluxvariableX,(r) and the

difference variables of velocity and scalar at the same point
) r [Eqg. (10)]. This is an analog of theefined similarity hy-
Hence all of thel,’s for p=2 arestrictly smaller than the pothesisRSH) in three dimensions, which, in the version of
“classical” values. This is not so surprising for the higher- kraichnan [29], states that local energy flux scales as
p valuesp>2, since this is a familiar situation usually asso-17,(r)~[Av(r)]%/! in terms of the velocity difference at the
cluding the unusual cage=2, have a different origin. They ysed in our discussion of the three-dimensia@&) RSH in

arise just from the condition of constant mean flux, which[2g] and the 2D RSH for vorticity scaling exponents[1].
requires smaller{,(#)’s when h is bigger. However,z  |f we assume

smaller than the local turnover exponent at fixed value of

eddy-diffusivity exponent requiresh bigger than its classi- (X|P)~1 70 (28)
cal value - y. Indeed, + y<h<1-2z from Eq. (25) if ’
z<vy.

Another important comparison between the rapid-changthen there follow heuristically from Eq.10) relations be-

e ) . een the exponents,(6), {4(v), and 7,(X). The expo-
model and the finite time-correlation cases arises from th%entsTp(X) measure the increasing spatial intermittency or

dimension dependence. of the Ygglom relation. It is CI(.aar“spottiness” of the scalar flux at decreasing length scales. In
from Eq. (15) for S,(I) in the rapid-change model that it fact. si %)= the | tive int L of it
oes 1o a finite limit asl— if and only if D Dy/d?, with  2Cb SINC&X)=x over the long convective interval of |
goes : o' may be expected that tHeoncave inp) exponentr,(X) is
D, fixed. In fact, it follows from the work of Chertkogt al. vef 1. Th di P hi
in [6] that with that choice ofl dependence db all scalar negativefor monentsp=>1. The corresponding .growt n
moments ofX; as|—0 reflects the increase in its fluctua-

e e T, 2L 4ors. A we shall stablsh below, he ermitency of e

. Lo . : onvective range scalar flux implies anomalous scaling of
this dependence oD |mp_I|es_that each of the=1,.. " d the scalar structure functions over that same interval. It is
compgnent?_of the VEIOC'.ty f'e.'ld‘(l) at scale h?s typical  ihis connection between intermittency and anomalous scal-
magnitudel*~?//d and, likewise, each of tth COMPO-jng that is the essence of Kraichnan’s RE29]. After these
nents of the strain tensam =1/2[(Vv))+(Vv)) '] are of  reqits are derived as theorems below, we shall comment on
order|~7/\d. It may be argued on the basis of theory of the relationship with other refined similarity hypotheses for
rando_m matrices that the typical strains along principal axeassive scalars recently propo$8,31,19. These latter hy-
the eigenvalues o, are ordel™” asd—x; see[26,27.  potheses are motivated by the original Kolmogorov RSH
This seems to be the correct scaling for a nontrivial I|m|t,[32], which involves space-averaged dissipation rather than
since the strain magnitudes gives the ratdft; of scalar |g¢cal flux.
cascade([Actually, the principal eigenvalueof oy may be We first must introduce an appropriate definition of the
expected to determine the rate of scalar cascade[28e  |ocal scalar flux. It is most easily done using a smooth
However, for random Wigner matrices with asymptotic fiitering techniqueto differentiate the large-scale and small-
SemiCirCIe diStribution Of eigenvalues, |t iS knOWH a|SO thatsca|e modes. This is the same method used in the |arge_eddy
the leading eigenvalue is withi®(1/d*°) of the right edge  simulation modeling scheme and in our earlier discussion of
of the spectrunj.The Yaglom relation shows that the matter the 3D casé28]. Here we apply the filter to the scalar equa-
is not so simple for the finite time-correlation situation. Fortjon (1). That is, we consider the “large-scale scalar field”
that relation a scaling ~1/d is required to obtain a finite  yofined as the convolution fieEZGﬁ‘ 6. with some suit-

limit as d—cc. This does not contradict the results [@, 5 filter functionG, . The resulting equation is
since they takes= 7, /t, as the small parameter of their ex-

pansion. Working this through, one finds that this amounts to
takingv,~ (Do/\ed)I*~ 7 and 7~ e(17/Dy). For anyd, this
correctly recovers thé correlated model in the limie— 0. . . o . .
In fact, e is just the quantity denoted, in [15]. For the 1he large-scale velocity field is likewise defined by
validity of the Yaglom relation it is therefore required that v;j=G*v. Note thatj,=(v#6),—V,6, is a space flux of the
e~d, which is clearly incompatible with the condition &)  scalar induced by the turbulent convecti@udy diffusion).
that e<1 at larged. (The proportionality of single-time ve- A main ingredient of our proofs is the following exact for-
locity realizations toe~ 2 here, as well as in Kraichnan’s mula for this turbulent flux:

original 1968 derivation, makes clear that such single-time

values do not exist in thé correlated model obtained by the L) =[A6(r,t)Av(r,t)],—[A6(r, )] [Av(r,t)],.

limit e—0. Only integrals over some finite time interval are (30

3.6,(r O+ V-[v,(r,0)6,(r,0) +j,(r,)]=0. (29
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Here[f],=/d?sG,(s)f(9) is the average over the separation 7;(X)=0. However, as noted above, intermittency of scalar
vectorsin the difference operatakg with respect to the filter  flux will imply that 7,(X) <0 forr>1 and then the inequali-
functionG,(s). The identity Eq(30) appeared ifi33] and its  ties are sharpened. This is particularly easy to see for the
physical meaning was discussed[R1,2§ (see alsd34]). case of a “synthetic” turbulent convection by a Gaussian
Heuristically,j,(r)~Av(r)A,6(r). random velocity field. For the Gaussian fieldr any
Recall that thescalar-intensityintegralK (t) = 3/ , #%(t) is ~ “monofractal” field) agq(v)=h for all g. Thus, taking
formally conserved by the full dynamics. From Eg9) for  g— in the above inequality, one easily obtains p/2 and
the large-scale scalar field it is straightforward to derive by

the standard methods of nonequilibrium thermodynamics a p
J ) £p(0)= 5 (1=h)+ 7p(X). 37

local balance equation for its large-scale inteniﬁtyz%ﬂz.
It has the form

DK, (r,t)+ V-Dy(r, )= — X,(r,t). (31

Thus {,(0) will be strictly lessthan the “classical expo-

nent” gg'ass:(pIZ)(l—h) and the “anomaly” is exactly an

intermittency exponent of the convective-range flux. This re-

HereD_t represents; +v,(r,t)-V,, the convective derivative sult implies that convection by a regular-scaling random ve-

associated with the large-scale velocity,

Dy(r,t)=6,(r,0ji(r,t) (32

locity will nonetheless lead to anomalous scaling for the sca-
lar it passively convects, if the associated flux variable
develops strong fluctuations.

It is worthwhile to make a comparison of these results

represents the space transport of the large-scale intensity R¥in the other recently proposed RSH for passive scalars

convective diffusion, and thscalar flux

Xi(r,)==V6y(r,t)-j(r,t) (33

represents the scalar transfer to the small-scale modes. In
homogeneous, stationary ensemble the left-hand side of E
(31) has a vanishing average. In a steady state with constant
mean fluxy of scalar substance to high wave numbers, the
average(X,)=y, a constant, foi lying in the convective
interval. Together with Eq(30), the formula(33) for scalar
flux shows thatX,(r)~Av(r)[A,6(r)]%/1, which is the
RSR, Eq.(10). It is the exact equation80) and(33) that are
the precise form of our RSR, applicable even without as
sumptions of local isotropy or other statistical properties.
They are essentially kinematic in nature, based only upon th

conservation properties of the underlying dynamics.

From these exact relations, there follow refinements of th
previous exponent inequalities. In fact, it follows from the

(generalizeg Holder inequality that for

2 1 1
=T (39
the ordering holds that
ITr(X)/r~<|X||I’>1/f
(1A,6]P)?P(| A v| %)Y
=
I
~|20p(6’)+o'q(u)fl (35)
and thus
(X
20,(0)+ og(v)<1+ f(r ), (36)

[30,31,19. While our formulation is motivated by the 1974
“revisionist” RSH of Kraichnan, involving flux, the RSH
explored by the above authors is an adaptation of that origi-
nally proposed by Kolmogoroy32]. That is, it is hypoth-
&sized that the random variables

[le(r)]e
Ve(f,|)EA|9(r)Wr, (39

defined in terms of volume-averaged dissipatiefs) and
xi(r) of velocity and scalar intensities, respectively, have
conditional distributions given values and y,, which are
independent of the local Reynolds number, Rad local Pe
(élet number Pewhen those are both large. That is, the vari-
ableV, is supposed to have a universal distribution in the

dnertial-convective range of. If this relation is combined

with the original Kolmogorov RSH, then it is easy to infer
likewise the existence of a random varialilg, universal in
the same sense, such that

Ap[A6]7~Wxl. (39

Seg[19,31. Given the Kolmogorov RSH for velocity differ-
ences, this last relation is, in fact, equivalent to the RSH for
passive scalars proposed[i80,31,19. It provides a natural
bridge between that RSH for passive scalars and the one
established here. Since we have shown th&f
~Aw[A,6]%/1, the above relation may be more or less para-
phrased as

Xi~Wox; - (40)

In other words, the ratiX,/x,;=W, is a random variable
whose distributions conditioned on fixeg, y, are universal
in the inertial-convective interval df. Again, this is essen-
tially just a reformulation of the RSH d80,31. If it holds,
then a simple consequence is that

This is our main result on the scaling exponents. The deri-

vation requires only the exact kinematical relations Eg6)
and (33 rather than the heuristic form of the RSR Eg0).

For the details of this, see the Appendix[@8]. Note that

r=1 recovers the previous inequalities E@18) if

(IXi[P)=(IWalPlerxi DX (41)

and the coefficient(|W,|P|e|,x;,1) is, in the inertial-
convective range, just a constant factow,|°). Therefore,
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in particular, 7,(X) = 7,(x) for all p and the intermittency ing 7,(X)]. Clearly, they are the same. It was already shown
exponents of the convective-range fldxand the scalar dis- in [7] that the RSH holds in the white-noise model. Our point
sipation, volume-averaged over the same length scgles here is that the RSH is a consequence just of the AFR. This
are the same. In that case, all of the inequalities previouslhappy situation does not, however, hold for the original AFR
rigorously derived in terms of,(X) hold also forr,(x). In  applied to velocity gradients, nor even necessarily for scalar
terms of providing a theoretical foundation to the RSH forgradients in true turbulence. In the case of velocity gradients,
passive scalars, it may be easier to proceed by starting witthe application of the AFR analogous to the above leads to

Eq. (40). the relation[36]
Another interesting comparison involves thdditive fu- 40)
. . S . »(v
sion rule (AFR), which was proposed originally for the tur LH(v)=p 5 + 7ole), (47)

bulent velocity gradient$36,37. Recently, the straightfor-
ward extension of these rules to the scalar gradients hash the RSH leads instead t
received some analytical support in Kraichnan's rapid-W ereas the eads instead fo

change mod€l3,5-7). As we now explain, it happens that in

. . : ; p
this model the AFR and the RSH lead to identical relations {p(v) = §+ Toia(&). (48)
between scaling exponents. The AFR states, in a schematic
form, that These are not equivalent and the RSH result seems to be in

better agreement with the experimental di8]. It is pos-
P1]. .. Pn]~ Pt +Pn
(VO] [(VOPr]~[(VE)™ 5 (42) sible to formulate an AFR consistent with the RSH by sup-

We ignore, for the sake of this argument, the vector charactd?®Sing that the additive algebra E¢2) holds with Vv re-
of the scalar gradient, which, properly, should be taken intd?laced by the scalar composite= v|Vv|* [39]. This is also

account(cf [36]). The quantitie§(V 6)P] are so-called renor- More pIausipIe in te'rm.s of rotational symmetry. As no_ted in
malized composite variables. This means simply that oné36l, the naive prediction Eq47) was based upon a disre-

defines them as the limit gfth powers of scalar gradients at gard of the tensorial character of products of velocity gradi-

the same space point, in the model wifg>0, but multi-  €NtS-

plicatively renormalized by an appropriate powerf. Af- One use of our exact inequalities i_s as a check on experi-
ter nondimensionalizing the variablaccording to its “ca- mental data for scaling exponents, since these employ a va-

nonical” or engineering dimensignthere may still be riety qf assqmptions and approximatioffaylor hypothesis,
required a factoZ(7p)~ (75 /L) % to make the correla- one-dimensional surrogates, ¢td-or that purpose, we may

tions finite in the limit 75 —0. The exponenk, is the so- cite the experimental results pi4]

called anomalous scaling dimensiorof the variable {o(0)~0.65, (3(0)~0.82, (,(6)~0.95 (49
[(VO)P]. Observe, in this context, that the scalar dissipation

x(r)=«|Vé(r)|?, when divided by its mear, is nothing for the scalar exponents af85]

more than[(V #)?]. The precise meaning of the schematic . _ _
result Eq.(42) is that, inserted in arbitrary correlators at 02(v)~0.355, 03(v)=0.333, ‘TW(U)SUM”)NO‘%%)

separated points,

for the velocity exponents. We shall here assume
o1/{v)~0.(v) since the graph of,(v) is close to linear for
p of order 20. In that case, if we make comparison, for
simplicity, with the Yaglom inequalities, we find that

[(VO)PHI(N-1q)- - [(VOPI(N-Tp)

~ NPyt tp X T TR [(VO)PLT TP (0) (43

in the limit asA — 0. It is easy to show, as i86], that the 0.65~20.(0)<1— ~0.78 51
above AFR leads to a “multiscaling law” for scalar structure ' o2(0) o=(0)~=0.78, ®D
functions(now without absolute valuesof the form 0.55~203(8)<1—03(v)~0.67, (52)

([A0]P)y~ 1 X)P*Xp, (44) 0.48<204(0)<1— o(v)~0.65. (53)

Moreover, if the short-distance expansion is applied to theyll of these inequalities are well satisfied by the data. The
moments of the volume-averaged dissipation, it is immedifact that there is a considerable margin between the upper
ately obtained that and lower limits is also consistent with an intermittency cor-
T rection from the scalar flux. Determination of the latter from
(xP)~ 1P, (45 DNS or, experimentally, from the surrogatgu[A,6]%1,

In Kraichnan’s modelx;=1—(y/2) andx,=0. Thus Egq. would be of interest.

(44) leads to {,(0)=p(y/2)+x, and Eq. (45 yields ACKNOWLEDGMENTS
7o(X) =Xz, . Hence together they give
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Y Workshop on fully developed turbulence, where most of
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This should be compared with the result of RSH for theSreenivasan. | also wish to thank G. Falkovich for very help-
model Eq.(37) [taken as an equality and with,(x) replac-  ful discussions regarding his work.
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