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We establish exact inequalities for the structure-function scaling exponents of a passively advected scalar in
both the inertial-convective and viscous-convective ranges. These inequalities involve the scaling exponents of
the velocity structure functions and, in a refined form, an intermittency exponent of the convective-range scalar
flux. They are valid for three-dimensional Navier-Stokes turbulence and satisfied within errors by present
experimental data. The inequalities also hold for any ‘‘synthetic’’ turbulent velocity statistics with a finite
correlation in time. We show that for time-correlation exponents of the velocity smaller than the ‘‘local
turnover’’ exponent, the scalar spectral exponent is strictly less than that in Kraichnan’s@Phys. Rev. Lett.72,
1016 ~1994!; Phys. Fluids11, 945 ~1968!; J. Fluid Mech.64, 737 ~1974!; 62, 305 ~1974!# soluble ‘‘rapid-
change’’ model with velocityd correlated in time. Our results include as a special case an exponent inequality
derived previously by Constantin and Procaccia@Nonlinearity7, 1045~1994!#, but with a more direct proof.
The inequalities in their simplest form follow from a Kolmogorov-type relation for the turbulent passive scalar
valid in each space dimensiond. Our improved inequalities are based upon a rigorous version of the refined
similarity hypothesis for passive scalars. These are compared with the relations implied by ‘‘fusion rules’’
hypothesized for scalar gradients.@S1063-651X~96!04308-5#

PACS number~s!: 47.27.2i

I. INTRODUCTION

Much progress has been made recently in the understand-
ing of anomalous scaling for the problem of randomly ad-
vected scalars@1–10#. The dynamical equation of the model
is

@] t1v~r ,t !–¹r#u~r ,t !5kn ru~r ,t !1 f ~r ,t !, ~1!

with u(r ,t) the scalar field,f (r ,t) a ~stochastic or determin-
istic! source, andv(r ,t) a random incompressible velocity
field. The issue of interest is the presumed scaling law

Sp~ l !; l zp~u! ~2!

as l→0 for the scalar structure functionsSp( l ;u)
[^uD luup&. For a high Reynolds number turbulence and for
molecular diffusivity of the order of magnitude of the mo-
lecular viscosity, or greater,k>n, the dimensional theory of
Obukhov@11# and Corrsin@12# implies that,

Sp~ l !;~x/«1/3!p/2l p/3, ~3!

in which x5k^@¹u#2& is the ~mean! scalar dissipation and
« is the dissipation of kinetic energy. The scaling law Eq.~3!
is supposed to hold forL@ l@(k3/«)1/4, where L is the
length scale of the scalar source, assumed less than the inte-
gral scale of velocity. This specifies theinertial-convective
range. Thuszp(u)5p/3 in the classical theory of this range.
On the other hand, fork!n there is another range,
L@ l@(k3/«)1/4, in which it is now assumed thatL is at, or
smaller than, the Kolmogorov dissipation scale (n3/«)1/4.
Over this range, the so-calledviscous-convective range, the
theory of Batchelor@13# proposes that

Sp~ l !;~x/s!p/2logxp~ l /L !, ~4!

with s a mean shear strength. Herezp(u)50 formally for all
p. Whereas@11,12# predictedzp(u) to be a linear function of
index p, it is now generally expected that these exponents
are some nontrivial concave functions ofp, i.e., that there is
anomalous scaling@14#.

The recent work on this problem cited above mostly deals
with a special model in which the Eulerian velocity field is
zero-mean Gaussian,d correlated in time

^v i~r ,t !v j~r 8,t8!&5Vi j ~r2r 8!d~ t2t8!. ~5!

This so-called ‘‘rapid-change model’’ was investigated by
Kraichnan@15#, who observed that for this case the infamous
closure problem is absent: theNth-order correlator ofu
obeys equations depending only upon itself andlower-order
correlators. The recent analytical investigations explore par-
ticular limiting regimes: the case with space dimension
d@1 in @6,7# and the case with eddy-diffusivity exponent
0,z!1 in @4,5#. The latter exponent is defined by the as-
sumed scaling relation for the~Richardson! eddy-diffusivity
tensor

Ki j ~r ![
1

2E2`

t

dŝ @v i~r ,t !2v i~0,t !#@v j~r ,s!2v j~0,s!#&

5Vi j ~0!2Vi j ~r !, ~6!

that

Ki j ~r !;D~d21!d i j r
z1Dzr zS d i j2

r i r j
r 2 D ~7!

for small r . Note that Eq.~6! is an analog for this model of
Taylor’s 1921 exact formula for the eddy-diffusivity@16#
~which involves instead Lagrangian velocities!.

It is our purpose here to consider the problem with a finite
time correlation of the convecting velocity field. This in-
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cludes the realistic case where the velocities are turbulent
solutions of Navier-Stokes dynamics. In addition, our results
apply to a model recently considered@8# with the Eulerian
velocity field taken as a Gaussian with covariance obeying
dynamical scaling

Vi j ~r ,t ![
1

2
^@v i~r ,t !2v i~0,t !#@v j~r ,0!2v j~0,0!#&

5
Dr z

t r
Fd i j giS tt r D1S d i j2

r i r j
r 2 Dg'S tt r D G , ~8!

with t r5tL(r /L)
z. Our results in the finite correlation-time

models shall be applicable to both the limiting regimes stud-
ied for the rapid-change model:d@1 and 0,z!1. How-
ever, rather than asymptotic formulas for the scaling expo-
nents, we shall derive exact inequalities. One interest of our
results is that they point up some significant differences be-
tween the zero and finite correlation-time problems.

Our simplest set of inequalities are based upon the rela-
tion

^D lv i@D lu#2&52
4

d
x l . ~9!

This equation is valid forL@ l@hD , whereL is the length
scale of the scalar source andhD is a dissipation length,
given by the Obukhov-Corrsin length (k3/«)1/4 @11,12# for
high Reynolds number Navier-Stokes turbulence and by
(k/D)1/z for the model of@8# @Eq. ~8!#. Equation~9! is a
relation analogous to that of Kolmogorov for the third-order
velocity structure function@17# and it was proved ford53
by Yaglom in 1949@18#. It simply expresses the constancy
of scalar flux over the convective range of scales. By direct
application of the Ho¨lder inequality, we will derive from this
relation a basic set of inequalities relating the scaling expo-
nents of pth structure functions of the scalarzp(u) with
those of the velocityzp(v). The implications of these results
will be discussed in Sec. II.

Furthermore, we shall derive an improved set of inequali-
ties by means of arefined similarity relation~RSR! for the
passive scalar. In a precise version stated below, the RSR we
prove is

Xl~r !;
D lv~r !@D lu~r !#2

l
, ~10!

in which Xl(r ) is a local scalar flux to scales less thanl at
space pointr . ~cf @14#.! The corresponding inequalities will
involve theintermittency exponenttp(X) of the scalar flux

^uXl up&; l tp~X!, ~11!

which measures the increasing spatial spottiness of the flux
as l→0. These inequalities rigorously establish an intuitive
fact: that convective-range intermittency of the scalar flux
implies anomalous scaling of the scalar structure functions.
These results are given in Sec. III, along with some general
discussion of refined similiarity hypotheses for passive sca-
lars, including the relation to ‘‘fusion rules’’ proposed for
scalar gradients.

II. YAGLOM RELATION INEQUALITIES

We shall sketch here very concisely the proof of the Ya-
glom relation for any space dimensiond. See also@19# and,
for more details@20#, and Appendix II of@21#. The first step
is to define a~mean! ‘‘physical space scalar flux’’ via

X~ l![2
1

2

d

dt
^u~r ,t !u~r1 l,t !&u conv,t50 . ~12!

The subscript ‘‘conv’’ indicates that only the convective
terms in Eq. ~1! are used. A simple calculation using
incompressibility and spatial homogeneity gives
X( l)52 1/4¹l–^D lv@D lu#2&. Assuming also spatial isot-
ropy, the vectorA( l)5^D lv@D lu#2& is ~for d.2) of the form
A( l)5Ai( l ) l̂, where l̂ is the unit vector in the direction of
l. In the convective range of length scalesl with constant
mean scalar flux, Eq.~12! becomes24x5¹l–A( l) or

24x5
d21

l
Ai~ l !1

dAi

dl
~ l !. ~13!

The only solution of this equation regular forl→0 is

Ai~ l !52
4x

d
l . ~14!

This completes the derivation of Eq.~9!. It is useful to re-
mark here that the Yaglom relation doesnot hold in the
Kraichnan rapid-change model. In fact, the left-hand side of
Eq. ~9! is not even well defined in Kraichnan’s model, since
it is expressed by a product ofD lv i and @D lu#2 at a single
instant. However, with thed correlation in time, the velocity
is a distribution-valued~generalized! process and the single-
time values are not defined. The analogous result for Kraich-
nan’s model is@15#

S2~ l !;
x

Dd2
l 22z, ~15!

which, like the Yaglom relation for the finite correlation-time
velocity statistics, is an exact result in thed correlated
model.

A simple set of exponent inequalities follows from the
Yaglom relation as a straightforward application of the
Hölder inequality. The inequalities forzp(u) involve as well
the exponentszp(v) of the ~absolute! structure functions of
velocity Sp( l ;v)[^uD lvup&; l zp(v). They are simplest to
state in terms of the exponentssp(u)5zp(u)/p and
sp(v)5zp(v)/p. By the Yaglom relation and the Ho¨lder
inequality,

4x l5u^D lv i@D lu#2&u

<^uD lvuq&1/q^uD luup&2/p; l 2sp~u!1sq~v ! ~16!

for

p>2,
2

p
1
1

q
51. ~17!

As this relation must hold in the infinitely long convective
range asl→0, it follows that
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2sp~u!1sq~v !<1. ~18!

We have used the isotropic form of the Yaglom relation, but
this is inessential~see@21#!. The special case of Eq.~18! for
p5`,q51 was previously derived by Constantin and Pro-
caccia@22# on the basis of estimates for Hausdorff dimen-
sions of scalar level sets; see Eq.~4.2! there. The authors of
@22# were not specific about which orderp,q of exponents
were involved, but inspection of the proof shows thatp5`
andq51, in our notation, was used. Actually, most of their
proof generalizes to generalp,q satisfying Eq.~17!, except
for the result on dimensions of level setsEu ,
DH(Eu)<d2s`(u), their Eq.~1.8!, which usedp5`. In-
cidentally, we disagree with the conclusion of@22# that the
estimate is sharp, i.e., an equality. This claim in Sec. IV is
based on an opposite inequality 2s`(u)1s1(v)>1, sup-
posed to be derived in@23#, which we dispute. In fact, ex-
amination of the argument of@23# shows that an implicit
assumption was made that aspatially uniformdiffusive cut-
off exists, below which length scale the scalar graph is
smooth. This assumption was used in the selection ofr 0 in
their inequality Eq.~4.23!. To bound vold„G(B)… from below
requires thatG(B) is smooth on scales less than or equal to
r 0 so that a uniform choice ofr 0 may be made. It is possible,
however, that there is a ‘‘local fluctuating cutoff,’’ as postu-
lated in some multifractal pictures; see@24#. In that case, the
uniform choice ofr 0 would fail and the result, as well as its
proof, might break down. Our very simple derivation here
shows that Eq.~18! belongs to a family of inequalities that
are a consequence just of the constancy of scalar flux. These
inequalities express a complementarity between the regular-
ity of the velocity and scalar fields: if the~Besov! regularity
exponent of velocitysq(v) is ‘‘big’’ then the corresponding
scalar exponentsp(u) must be ‘‘small.’’

The basic inequality Eq.~18! may also be written as

zp~u!<
p

2
@12sq~v !# ~19!

for p>2, 2/p11/q51. This relation may be considered under
various special assumptions. If the scaling exponents of ve-
locity v are taken to be K41, i.e.sq(v)51/3 for all q>1;
then it follows that

zp~u!<
p

3
~20!

for p>2. Thus the Obukhov-Corrsin predictions for the
inertial-convective range appear as upper bounds. Likewise,
if the velocity field is assumed smooth, orsq(v)51 for all
q>1, then

sp~u!<0. ~21!

The smoothness assumption would hold, for example, for the
velocity field in the viscous dissipation range and then the
Batchelor exponents for the viscous-convection range appear
as upper bounds. More generally, if it is assumed that
sq(v)5h for all q>2, then

zp~u!<
p

2
~12h!. ~22!

This assumption on the velocity scaling exponents corre-
sponds to a ‘‘monofractal’’ field and would be true for con-
vection by a Gaussian random velocity field.

The last inequality has some interesting consequences for
the model studied in@8#. In that model the velocity field is
space-time Gaussian with covariance satisfying dynamical
scaling Eq.~8!. Settingt50 in that equation, it is easy to see
that 2h5z2z or

z52h1z. ~23!

As pointed out above,z has roughly the interpretation of an
eddy-diffusivity exponent analogous to the Richardson expo-
nent zR54/3 @25#. This is not entirely accurate since the
exponent appears in the scaling law Eq.~8! hypothesized for
Eulerian velocitiesin the model of@8#. For z,1 Eq. ~8! is
not an accurate representation of Eulerian time correlations,
which will then be dominated by convective sweeping. Nev-
ertheless, keeping to this terminology, there is also for fixed
‘‘eddy diffusivity exponent’’ z a complementarity between
the magnitudes of velocity regularity exponenth and dy-
namical scaling exponentz: if one is big, the other is small.
Of course, this is just due to the simple heuristic that eddy-
diffusivity Kl;v l

2t l . A similar relation should also hold for
Navier-Stokes turbulence, i.e.z5z2(v)1z, except that there
the scaling exponentz will correspond toLagrangian time
correlations. It is only for Lagrangian time functions that the
dynamical scaling can hold and, furthermore, the exact Tay-
lor formula Eq.~7! involves such correlations. By means of
Eq. ~23!, the main inequality Eq.~19! may be reexpressed as

zp~u!<
p

4
~z1g!, ~24!

whereg[22z. In fact, Eq.~23! states that

12h5
z1g

2
, ~25!

so that it is a direct consequence. Equation~24! holds for all
p>2 in the model of@8#; furthermore, it will hold also for
p52 in Navier-Stokes turbulence, ifz5z2(v)1z as ex-
pected.

In @8# an expansion of the rapid-change model was devel-
oped in the magnitudee of the correlation time. They em-
ployed a particular choice of dynamical exponentz5g.
Their plausible physical argument for this choice ran as fol-
lows: the ‘‘local turnover time’’ of scalar eddies at scalel is
t l; l /v l; l 12h and this defines a ‘‘local turnover value’’ of
the dynamical exponentz512h. Note that by using Eq.
~23! this value is achieved precisely whenz511h or
g512h. In other words, the local turnover exponent is ob-
tained whenz5g. For z.g the velocity at vanishingly
small scales changes randomly at a faster and faster rate
relative to the evolution time of the scalar eddies. Hence it is
plausible that the predictions of the rapid-change model will
hold in that case. On the other hand, forz,g, the realiza-
tions of the velocity field are selected randomly at a rate that
goes to zero compared to the scalar cascade rate, i.e., the
velocity field randomness is ‘‘frozen in.’’ We shall now ob-
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serve that in the latter case of quenched randomness, or
z,g, the scalar spectral exponent

z2~u!,g, ~26!

with strict inequality. This is direct from Eq.~24!. More
generally, forp>2

zp~u!,
p

2
g. ~27!

Hence all of thezp’s for p>2 arestrictly smaller than the
‘‘classical’’ values. This is not so surprising for the higher-
p valuesp.2, since this is a familiar situation usually asso-
ciated to ‘‘intermittency.’’ The present strict inequalities, in-
cluding the unusual casep52, have a different origin. They
arise just from the condition of constant mean flux, which
requires smallerzp(u)’s when h is bigger. However,z
smaller than the local turnover exponent at fixed value of
eddy-diffusivity exponentz requiresh bigger than its classi-
cal value 12g. Indeed, 12g,h,12z from Eq. ~25! if
z,g.

Another important comparison between the rapid-change
model and the finite time-correlation cases arises from the
dimension dependence of the Yaglom relation. It is clear
from Eq. ~15! for S2( l ) in the rapid-change model that it
goes to a finite limit asd→` if and only if D}D0 /d

2, with
D0 fixed. In fact, it follows from the work of Chertkovet al.
in @6# that with that choice ofd dependence ofD all scalar
correlations have a nontrivial limit asd→` and, in fact,
correspond to the correlations of a Gaussian field. Note that
this dependence ofD implies that each of thei51, . . . ,d
components of the velocity fieldv i( l ) at scalel has typical
magnitudel 12g/Ad and, likewise, each of thed2 compo-
nents of the strain tensorsl51/2 @(¹vl)1(¹vl)

Á# are of
order l2g/Ad. It may be argued on the basis of theory of
random matrices that the typical strains along principal axes,
the eigenvalues ofsl , are orderl2g asd→`; see@26,27#.
This seems to be the correct scaling for a nontrivial limit,
since the strain magnitudes gives the rate;1/t l of scalar
cascade.@Actually, the principal eigenvalueof s l may be
expected to determine the rate of scalar cascade; see@26#.
However, for random Wigner matrices with asymptotic
semicircle distribution of eigenvalues, it is known also that
the leading eigenvalue is withinO(1/d2/3) of the right edge
of the spectrum.# The Yaglom relation shows that the matter
is not so simple for the finite time-correlation situation. For
that relation a scalingv;1/d is required to obtain a finite
limit as d→`. This does not contradict the results of@8#,
since they takee5t l /t l as the small parameter of their ex-
pansion. Working this through, one finds that this amounts to
takingv l;(D0 /Aed) l 12g andt l;e( l g/D0). For anyd, this
correctly recovers thed correlated model in the limite→0.
In fact, e is just the quantity denotedt* in @15#. For the
validity of the Yaglom relation it is therefore required that
e;d, which is clearly incompatible with the condition of@8#
that e!1 at larged. ~The proportionality of single-time ve-
locity realizations toe21/2 here, as well as in Kraichnan’s
original 1968 derivation, makes clear that such single-time
values do not exist in thed correlated model obtained by the
limit e→0. Only integrals over some finite time interval are

well defined and the left-hand side of the Yaglom relation,
for the idealized white-noise limit, is a meaningless expres-
sion.!

III. REFINED SIMILARITY INEQUALITIES

We shall now derive inequalities that improve those from
the Yaglom relation. The basic idea of the proof is a scaling
relation between thelocal scalar fluxvariableXl(r ) and the
difference variables of velocity and scalar at the same point
r @Eq. ~10!#. This is an analog of therefined similarity hy-
pothesis~RSH! in three dimensions, which, in the version of
Kraichnan @29#, states that local energy flux scales as
P l(r );@D lv(r )#

3/ l in terms of the velocity difference at the
same point. The proofs given below follow closely methods
used in our discussion of the three-dimensional~3D! RSH in
@28# and the 2D RSH for vorticity scaling exponents in@21#.
If we assume

^uXl up&; l tp~X!, ~28!

then there follow heuristically from Eq.~10! relations be-
tween the exponentszp(u), zq(v), and t r(X). The expo-
nentstp(X) measure the increasing spatial intermittency or
‘‘spottiness’’ of the scalar flux at decreasing length scales. In
fact, sincê Xl&5x over the long convective interval ofl , it
may be expected that the~concave inp) exponenttp(X) is
negative for monentsp.1. The corresponding growth in
moments ofXl as l→0 reflects the increase in its fluctua-
tions. As we shall establish below, the intermittency of the
convective range scalar flux implies anomalous scaling of
the scalar structure functions over that same interval. It is
this connection between intermittency and anomalous scal-
ing that is the essence of Kraichnan’s RSH@29#. After these
results are derived as theorems below, we shall comment on
the relationship with other refined similarity hypotheses for
passive scalars recently proposed@30,31,19#. These latter hy-
potheses are motivated by the original Kolmogorov RSH
@32#, which involves space-averaged dissipation rather than
local flux.

We first must introduce an appropriate definition of the
local scalar flux. It is most easily done using a smooth
filtering techniqueto differentiate the large-scale and small-
scale modes. This is the same method used in the large-eddy
simulation modeling scheme and in our earlier discussion of
the 3D case@28#. Here we apply the filter to the scalar equa-
tion ~1!. That is, we consider the ‘‘large-scale scalar field’’
defined as the convolution fieldū l5Gl* u, with some suit-
able filter functionGl . The resulting equation is

] tū l~r ,t !1¹–@ v̄l~r ,t !ū l~r ,t !1 j l~r ,t !#50. ~29!

The large-scale velocity field is likewise defined by

v̄l5Gl* v. Note thatj l[ (̄vu) l2 v̄l ū l is a space flux of the
scalar induced by the turbulent convection~eddy diffusion!.
A main ingredient of our proofs is the following exact for-
mula for this turbulent flux:

j l~r ,t !5@Du~r ,t !Dv~r ,t !# l2@Du~r ,t !# l@Dv~r ,t !# l .
~30!
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Here@ f # l5*d2sGl(s) f (s) is the average over the separation
vectors in the difference operatorDswith respect to the filter
functionGl(s). The identity Eq.~30! appeared in@33# and its
physical meaning was discussed in@21,28# ~see also@34#!.
Heuristically, j l(r );D lv(r )D lu(r ).

Recall that thescalar-intensityintegralK(t)5 1
2*Lu2(t) is

formally conserved by the full dynamics. From Eq.~29! for
the large-scale scalar field it is straightforward to derive by
the standard methods of nonequilibrium thermodynamics a
local balance equation for its large-scale intensityKl[

1
2ū l

2 .
It has the form

D̄tKl~r ,t !1¹–Dl~r ,t !52Xl~r ,t !. ~31!

HereD̄t represents] t1 v̄l(r ,t)–¹r , the convective derivative
associated with the large-scale velocity,

Dl~r ,t ![ū l~r ,t !j l~r ,t ! ~32!

represents the space transport of the large-scale intensity by
convective diffusion, and thescalar flux

Xl~r ,t ![2¹ū l~r ,t !–j l~r ,t ! ~33!

represents the scalar transfer to the small-scale modes. In a
homogeneous, stationary ensemble the left-hand side of Eq.
~31! has a vanishing average. In a steady state with constant
mean fluxx of scalar substance to high wave numbers, the
average^Xl&5x, a constant, forl lying in the convective
interval. Together with Eq.~30!, the formula~33! for scalar
flux shows thatXl(r );D lv(r )@D lu(r )#

2/ l , which is the
RSR, Eq.~10!. It is the exact equations~30! and~33! that are
the precise form of our RSR, applicable even without as-
sumptions of local isotropy or other statistical properties.
They are essentially kinematic in nature, based only upon the
conservation properties of the underlying dynamics.

From these exact relations, there follow refinements of the
previous exponent inequalities. In fact, it follows from the
~generalized! Hölder inequality that for

2

p
1
1

q
5
1

r
, ~34!

the ordering holds that

l tr ~X!/r;^uXl ur&1/r

<
^uD luup&2/p^uD lvuq&1/q

l

; l 2sp~u!1sq~v !21 ~35!

and thus

2sp~u!1sq~v !<11
t r~X!

r
. ~36!

This is our main result on the scaling exponents. The deri-
vation requires only the exact kinematical relations Eqs.~30!
and ~33! rather than the heuristic form of the RSR Eq.~10!.
For the details of this, see the Appendix of@28#. Note that
r51 recovers the previous inequalities Eq.~18! if

t1(X)50. However, as noted above, intermittency of scalar
flux will imply that t r(X),0 for r.1 and then the inequali-
ties are sharpened. This is particularly easy to see for the
case of a ‘‘synthetic’’ turbulent convection by a Gaussian
random velocity field. For the Gaussian field~or any
‘‘monofractal’’ field! sq(v)5h for all q. Thus, taking
q→` in the above inequality, one easily obtainsr5p/2 and

zp~u!<
p

2
~12h!1tp/2~X!. ~37!

Thus zp(u) will be strictly less than the ‘‘classical expo-
nent’’ zp

class5(p/2)(12h) and the ‘‘anomaly’’ is exactly an
intermittency exponent of the convective-range flux. This re-
sult implies that convection by a regular-scaling random ve-
locity will nonetheless lead to anomalous scaling for the sca-
lar it passively convects, if the associated flux variable
develops strong fluctuations.

It is worthwhile to make a comparison of these results
with the other recently proposed RSH for passive scalars
@30,31,19#. While our formulation is motivated by the 1974
‘‘revisionist’’ RSH of Kraichnan, involving flux, the RSH
explored by the above authors is an adaptation of that origi-
nally proposed by Kolmogorov@32#. That is, it is hypoth-
esized that the random variables

Vu~r ,l![D lu~r !
@ l« l~r !#

1/6

@ lx l~r !#
1/2, ~38!

defined in terms of volume-averaged dissipations« l(r ) and
x l(r ) of velocity and scalar intensities, respectively, have
conditional distributions given values« l andx l , which are
independent of the local Reynolds number Rel and local Pe´-
clet number Pel when those are both large. That is, the vari-
ableVu is supposed to have a universal distribution in the
inertial-convective range ofl . If this relation is combined
with the original Kolmogorov RSH, then it is easy to infer
likewise the existence of a random variableWu , universal in
the same sense, such that

D lv@D lu#2;Wux l l . ~39!

See@19,31#. Given the Kolmogorov RSH for velocity differ-
ences, this last relation is, in fact, equivalent to the RSH for
passive scalars proposed in@30,31,19#. It provides a natural
bridge between that RSH for passive scalars and the one
established here. Since we have shown thatXl
;D lv@D lu#2/ l , the above relation may be more or less para-
phrased as

Xl;Wux l . ~40!

In other words, the ratioXl /x l[Wu is a random variable
whose distributions conditioned on fixed« l ,x l are universal
in the inertial-convective interval ofl . Again, this is essen-
tially just a reformulation of the RSH of@30,31#. If it holds,
then a simple consequence is that

^uXl up&5^uWuupu« l ,x l ,l &^x l
p& ~41!

and the coefficient^uWuupu« l ,x l ,l & is, in the inertial-
convective range, just a constant factor^uWuup&. Therefore,

54 1501INTERMITTENCY AND ANOMALOUS SCALING OF . . .



in particular,tp(X)5tp(x) for all p and the intermittency
exponents of the convective-range fluxXl and the scalar dis-
sipation, volume-averaged over the same length scalesx l ,
are the same. In that case, all of the inequalities previously
rigorously derived in terms oftp(X) hold also fortp(x). In
terms of providing a theoretical foundation to the RSH for
passive scalars, it may be easier to proceed by starting with
Eq. ~40!.

Another interesting comparison involves theadditive fu-
sion rule ~AFR!, which was proposed originally for the tur-
bulent velocity gradients@36,37#. Recently, the straightfor-
ward extension of these rules to the scalar gradients has
received some analytical support in Kraichnan’s rapid-
change model@3,5–7#. As we now explain, it happens that in
this model the AFR and the RSH lead to identical relations
between scaling exponents. The AFR states, in a schematic
form, that

@~¹u!p1#•••@~¹u!pn#;@~¹u!p11•••1pn#. ~42!

We ignore, for the sake of this argument, the vector character
of the scalar gradient, which, properly, should be taken into
account~cf @36#!. The quantities@(¹u)p# are so-called renor-
malized composite variables. This means simply that one
defines them as the limit ofpth powers of scalar gradients at
the same space point, in the model withhD.0, but multi-
plicatively renormalized by an appropriate power ofhD . Af-
ter nondimensionalizing the variable~according to its ‘‘ca-
nonical’’ or engineering dimension! there may still be
required a factorZ(hD);(hD /L)

2xp to make the correla-
tions finite in the limithD→0. The exponentxp is the so-
called anomalous scaling dimensionof the variable
@(¹u)p#. Observe, in this context, that the scalar dissipation
x(r )5ku¹u(r )u2, when divided by its meanx̄, is nothing
more than@(¹u)2#. The precise meaning of the schematic
result Eq. ~42! is that, inserted in arbitrary correlators at
separated points,

@~¹u!p1#~l•r1!•••@~¹u!pn#~l•rn!

;lxp11•••1pn
2xp1

2•••2xpn@~¹u!p11•••1pn#~0! ~43!

in the limit asl→0. It is easy to show, as in@36#, that the
above AFR leads to a ‘‘multiscaling law’’ for scalar structure
functions~now withoutabsolute values! of the form

^@D lu#p&; l ~12x1!p1xp. ~44!

Moreover, if the short-distance expansion is applied to the
moments of the volume-averaged dissipation, it is immedi-
ately obtained that

^x l
p&; l x2p2px2. ~45!

In Kraichnan’s model,x1512(g/2) and x250. Thus Eq.
~44! leads to zp(u)5p(g/2)1xp and Eq. ~45! yields
tp(x)5x2p . Hence together they give

zp~u!5p
g

2
1tp/2~x!. ~46!

This should be compared with the result of RSH for the
model Eq.~37! @taken as an equality and withtp(x) replac-

ing tp(X)#. Clearly, they are the same. It was already shown
in @7# that the RSH holds in the white-noise model. Our point
here is that the RSH is a consequence just of the AFR. This
happy situation does not, however, hold for the original AFR
applied to velocity gradients, nor even necessarily for scalar
gradients in true turbulence. In the case of velocity gradients,
the application of the AFR analogous to the above leads to
the relation@36#

zp~v !5p
z2~v !

2
1tp/2~«!, ~47!

whereas the RSH leads instead to

zp~v !5
p

3
1tp/3~«!. ~48!

These are not equivalent and the RSH result seems to be in
better agreement with the experimental data@38#. It is pos-
sible to formulate an AFR consistent with the RSH by sup-
posing that the additive algebra Eq.~42! holds with¹v re-
placed by the scalar composite«5nu¹vu2 @39#. This is also
more plausible in terms of rotational symmetry. As noted in
@36#, the naive prediction Eq.~47! was based upon a disre-
gard of the tensorial character of products of velocity gradi-
ents.

One use of our exact inequalities is as a check on experi-
mental data for scaling exponents, since these employ a va-
riety of assumptions and approximations~Taylor hypothesis,
one-dimensional surrogates, etc.!. For that purpose, we may
cite the experimental results of@14#

z2~u!'0.65, z3~u!'0.82, z4~u!'0.95 ~49!

for the scalar exponents and@35#

s2~v !'0.355, s3~v !50.333, s`~v !<s17~v !'0.211
~50!

for the velocity exponents. We shall here assume
s17(v)'s`(v) since the graph ofzp(v) is close to linear for
p of order 20. In that case, if we make comparison, for
simplicity, with the Yaglom inequalities, we find that

0.65'2s2~u!<12s`~v !'0.78, ~51!

0.55'2s3~u!<12s3~v !'0.67, ~52!

0.48'2s4~u!<12s2~v !'0.65. ~53!

All of these inequalities are well satisfied by the data. The
fact that there is a considerable margin between the upper
and lower limits is also consistent with an intermittency cor-
rection from the scalar flux. Determination of the latter from
DNS or, experimentally, from the surrogateD lv@D lu#2/ l ,
would be of interest.
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